The prolyl hydroxylase oxygen-sensing pathway is cytoprotective and allows maintenance of mitochondrial membrane potential during metabolic inhibition.
نویسندگان
چکیده
The cellular oxygen sensor is a family of oxygen-dependent proline hydroxylase domain (PHD)-containing enzymes, whose reduction of activity initiate a hypoxic signal cascade. In these studies, prolyl hydroxylase inhibitors (PHIs) were used to activate the PHD-signaling pathway in cardiomyocytes. PHI-pretreatment led to the accumulation of glycogen and an increased maintenance of ATP levels in glucose-free medium containing cyanide. The addition of the glycolytic inhibitor 2-deoxy-d-glucose (2-DG) caused a decline of ATP levels that was indistinguishable between control and PHI-treated myocytes. Despite the comparable levels of ATP depletion, PHI-preconditioned myocytes remained significantly protected. As expected, mitochondrial membrane potential (DeltaPsi(mito)) collapses in control myocytes during cyanide and 2-DG treatment and it fails to completely recover upon washout. In contrast, DeltaPsi(mito) is partially maintained during metabolic inhibition and recovers completely on washout in PHI-preconditioned cells. Inclusion of rotenone, but not oligomycin, with cyanide and 2-DG was found to collapse DeltaPsi(mito) in PHI-pretreated myocytes. Thus, continued complex I activity was implicated in the maintenance of DeltaPsi(mito) in PHI-treated myocytes, whereas a role for the "reverse mode" operation of the F(1)F(0)-ATP synthase was ruled out. Further examination of mitochondrial function revealed that PHI treatment downregulated basal oxygen consumption to only approximately 15% that of controls. Oxygen consumption rates, although initially lower in PHI-preconditioned myocytes, recovered completely upon removal of metabolic poisons, while reaching only 22% of preinsult levels in control myocytes. We conclude that PHD oxygen-sensing mechanism directs multiple compensatory changes in the cardiomyocyte, which include a low-respiring mitochondrial phenotype that is remarkably protected against metabolic insult.
منابع مشابه
Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment.
To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fl...
متن کاملActivation of the prolyl hydroxylase oxygen-sensor results in induction of GLUT1, heme oxygenase-1, and nitric-oxide synthase proteins and confers protection from metabolic inhibition to cardiomyocytes.
Recently an oxygen-sensing/transducing mechanism has been identified as a family of O2-dependent prolyl hydroxylase domain-containing enzymes (PHD). In normoxia, PHD hydroxylates a specific proline residue that directs the degradation of constitutively synthesized hypoxia-inducible factor-1alpha. During hypoxia, the cessation of hydroxylation of this proline results in less degradation and thus...
متن کاملThe good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases.
Current concepts of cellular oxygen-sensing include an isoform of the neutrophil NADPH oxidase, different electron carrier units of the mitochondrial electron transport chain (ETC), heme oxygenase-2 (HO-2), and a subfamily of 2-oxoglutarate dependent dioxygenases termed HIF (hypoxia inducible factor) prolyl hydroxylases (PHDs) and HIF asparagyl hydroxylase FIH-1 (factor-inhibiting HIF). Differe...
متن کاملNeuronal apoptosis by prolyl hydroxylation: implication in nervous system tumours and the Warburg conundrum
Oxygen sensing is mediated partly via prolyl hydroxylation. The EglN prolyl hydroxylases are well characterized in regulating the hypoxia inducible factor alpha (HIF-alpha) hypoxic response, but also are implicated in HIF-independent processes. EglN3 executes apoptosis in neural precursors during development and failure of EglN3 developmental apoptosis can lead to certain forms of sympathetic n...
متن کاملActivation of the prolyl-hydroxylase oxygen-sensing signal cascade leads to AMPK activation in cardiomyocytes
The proline hydroxylase domain-containing enzymes (PHD) act as cellular oxygen sensors and initiate a hypoxic signal cascade to induce a range of cellular responses to hypoxia especially in the aspect of energy and metabolic homeostasis regulation. AMP-activated protein kinase (AMPK) is recognized as a major energetic sensor and regulator of cardiac metabolism. However, the effect of PHD signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007